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Making sense of text

Suppose you want to learn something about a corpus
that’s too big to read

need to make sense of...

- What topics are trending today on  half a billion tweets daily
Twitter?

- What research topics receive grant « 80,000 active NIH grants
funding (and from whom)?

- What issues are considered by * hundreds of bills each year
Congress (and which politicians are
interested in which topic)?

- Are certain topics discussed more in « Wikipedia (it's big)
certain languages on Wikipedia?



Making sense of text

Suppose you want to learn something about a corpus
that’s too big to read

need to make sense of...

 half a billion tweets daily

Why dont we justthrow all | . g 909 active NIH grants
these documents at the
computer and see what » hundreds of bills each year

interesting patterns it finds?

. Wikipedia (it's big)




Preview

- Topic models can help you automatically discover patterns
In a corpus

- unsupervised learning

- Topic models automatically...
- group topically-related words in “topics”
- associate tokens and documents with those topics
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Research grants
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Research grants
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Political iIssues
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Classics and “digital humanities”
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So what is “topic™?

Loose idea: a grouping of words that are likely to appear
In the same context

A hidden structure that helps determine what words are

likely to appear in a corpus

but the underlying structure is different from what you’'ve seen
before — it's not syntax

e.g. if “war” and “military” appear in a document, you probably
won’t be surprised to find that “troops” appears later on

why? it's not because they’re all nouns
...though you might say they all belong to the same topic

long-range context (cf. local dependencies like n-grams, syntax)



This lecture
. Tooi oleinf L dofinit
2. Topic models: formal definition

3. Smoothing, EM, and Bayesian inference



You've seen these ideas before

Most of NLP is about inferring hidden structures that we
assume are behind the observed text

- parts of speech, syntax trees

You've already seen a model that can capture topic
- let’'s look at HMMs again



Hidden Markov models

Every token is associated with some hidden state
- the probability of the word token depends on the state

- the probability of that token’s state depends on the state of the
previous token (in a 1st order model)

- The states are not observed, but you can infer them using
the forward-backward algorithm



Hidden Markov models

HMM is a reasonable model of part-of-speech:

Stocks mixed after long holiday weekend

Microsoft codename "Threshold": The next major Windows

Apple 1Pads beat early holiday expectations

- coloring corresponds to value of hidden state (POS)



Hidden Markov models

HMM is a reasonable model of part-of-speech:

Stocks mixed after long holiday weekend

Microsoft codename "Threshold": The next major Windows

Apple 1Pads beat early holiday expectations

but you might imagine modeling topic associations instead:

Stocks mixed after long holiday weekend

Microsoft codename "Threshold": The next major Windows

Apple iPads beat early holiday expectations



Topic models

Take an HMM, but give every document its own transition
probabilities (rather than a global parameter of the corpus)

- This let’s you specify that certain topics are more common
In certain documents

- whereas with parts of speech, you probably assume this doesn't
depend on the specific document



Topic models

Take an HMM, but give every document its own transition
probabilities (rather than a global parameter of the corpus)

This let’s you specify that certain topics are more common
In certain documents
whereas with parts of speech, you probably assume this doesn't
depend on the specific document
We'll also assume the hidden state of a token doesn’t
actually depend on the previous tokens
“Oth order”

individual documents probably don’t have enough data to estimate
full transitions

plus our notion of “topic” doesn’t care about local interactions



Topic models

- The probability of a token is the joint probability of the
word and the topic label

P(word=Apple, topic=1 | 8,, B,)
= P(word=Apple | topic=1, B,) P(topic=1 | 8,)



Topic models

- The probability of a token is the joint probability of the
word and the topic label

P(word=Apple, topic=1 | 6,, B,)
= P(word=Apple | topic=1, B,) P(topic=1 | 8,)

each topic has I I

distribution over words each document has
(the emission probabilities) distribution over topics
- global across all (the Oth order “transition” probabilities)

documents e local to each document



Topic models

- The probability of a token is the joint probability of the
word and the topic label

P(word=Apple, topic=1 | 6,, B,)
= P(word=Apple | topic=1, B,) P(topic=1 | 8,)

- The probability of a document is the product of all of its
token probabilities
- the tokens are independent because it's a Oth order model

- The probability of a corpus is the product of all of its
document probabilities



Topic models
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Topic models

Topics

gene 0.04
dna 0.02
genetic 0.01

Documents

Topic proportions and

assignments
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Estimating the parameters

- Need to estimate the parameters 6, 3

- want to pick parameters that maximize the likelihood of the
observed data

- This is easy if all the tokens were labeled with topics
(observed variables)

Data: Apple iPads beat early holiday expectations

- just counting

- But we don’t actually know the (hidden) topic assignments

Data: Apple iPads beat eatly holiday expectations

- sound familiar?



Estimating the parameters

Expectation Maximization (EM) to the rescue!

1. Compute the expected value of the variables, given the
current model parameters

2. Pretend these expected counts are real and update the

parameters based on these
- now parameter estimation is back to “just counting”

3. Repeat until convergence



Estimating the parameters

Expectation Maximization (EM) to the rescue!
E-step

P(topic=1 | word=Apple, 8,, B,)

= P(word=Apple, topic=1 | 64, B;)
2, P(word=Apple, topic=£ | 6,, B,)




Estimating the parameters

Expectation Maximization (EM) to the rescue!

M-step

new 6,
= # tokens in d with topic label 1 If the topic labels were
observed!

# tokens in d - just counting




Estimating the parameters

Expectation Maximization (EM) to the rescue!
M-step

new 6,
= 2., P(topic i=1 | word i, 6, B,)
Ek Zied P(topic i=£ | word i, 8, B,) -just the number of

tokens in the document

sum over each token /in document d
- numerator: “the expected number of tokens with topic 1”
- denominator: “the (expected) number of tokens”



Estimating the parameters

Expectation Maximization (EM) to the rescue!
M-step

new :81W
= # tokens with topic label 1 and word type w

# tokens with topic label 1

if the topic labels were

observed!
* just counting




Estimating the parameters

Expectation Maximization (EM) to the rescue!

M-step

1 if word=w, O otherwise
new 3, >

= > II(Word i=w)I P(topic i=1 | word i=w, 6, B,)
2., 2. I(word i=v) P(topic i=1 | word i=v, 6, 8,)
% sum over vocabulary
sum over each token j in the entire corpus

- numerator: “the expected number of times word w belongs to topic 1"
- denominator: “the expected number of all tokens belonging to topic 1”




Smoothing revisited

- Topics are just language models

- Can use standard smoothing techniques for the topic
parameters (the word distributions)
- most commonly add-lambda smoothing

- Can also smooth the topic proportions in each document



Smoothing: A Bayesian perspective

- The parameters themselves are random variables
- P(6]a)
- P(B[n)

- Some parameters are more likely than others
- as defined by a prior distribution

- You'll see that add-lambda smoothing is the result when
the parameters have a prior distribution called the
Dirichlet distribution

- (in fact, add-lambda is called “Dirichlet prior smoothing” in some
circles)



B
Geometry of probability distributions

A distribution over K elements is a point on a K-1 simplex
- a 2-simplex is called a triangle

A



B
Geometry of probability distributions

A distribution over K elements is a point on a K-1 simplex
- a 2-simplex is called a triangle

A

P(A) = 1
P(B)=0
P(C)=0



B
Geometry of probability distributions

A distribution over K elements is a point on a K-1 simplex
- a 2-simplex is called a triangle

A

P(A) = 1/2
P(B) = 1/2
P(C) =0



B
Geometry of probability distributions

A distribution over K elements is a point on a K-1 simplex
- a 2-simplex is called a triangle

A

P(A) = 1/3
P(B) = 1/3
P(C) = 1/3



D
The Dirichlet distribution

Continuous distribution (probability density) over points in
the simplex

- “distribution of distributions”
A




D
The Dirichlet distribution

Continuous distribution (probability density) over points in
the simplex

- “distribution of distributions” o
A denoted Dirichlet(a)

a is a vector that gives the
mean/variance of the
distribution

In this example, ag is larger
than the others, so points
closer to B are more likely

« distributions that give B high
probability are more likely
than distributions that don’t




D
The Dirichlet distribution

Continuous distribution (probability density) over points in
the simplex

- “distribution of distributions” o
A denoted Dirichlet(a)

a is a vector that gives the
mean/variance of the
distribution

In this example, a,=ag=a,,
so distributions close to
uniform are more likely

Larger values of a mean higher
density around mean

B c (lower variance)



B
Latent Dirichlet allocation (LDA)

LDA is the basic topic model you saw earlier, but with
Dirichlet priors on the parameters 6 and 8

- P(6 | a) = Dirichlet(a)
- P(B | n) = Dirichlet(n)

p(ﬂlzK, 01:D, 21:D, wl:D)

- o8 FT0) (L e 0 10150)



The posterior distribution

- Now we can reason about the probability of the hidden
variables and parameters, given the observed data

p(ﬂl:K, 01:D, Z21:D wl:D)
p(wi.p)

p(ﬂl:Ka 01:Da 21:D I wl:D) =



MAP estimation

- Earlier we saw how to use EM to find parameters that
maximize the likelihood of the data, given the parameters

- EM can also find the maximum a posteriori (MAP) value
- the parameters that maximum the posterior probability

P(,BI:K, 01:D, 21:D, wl:D)
Bi:x,61.p, 21.p | W1.p) =
p( ’ ’ | ) p(w1.p) ¢ constant

- This is basically maximum likelihood estimation, but with
additional terms for the probability of 6 and



D
MAP estimation

- E-step is the same
- M-step is modified

pseudocounts
new 6, r

- ‘a, - 1'+ =, P(topic i=1 | word i, 6/, 8,)

2. (a,-1+ =, P(topic i=t | word i, 6,, B,))

This amounts to add-lambda smoothing!

“add-alpha-minus-one smoothing”



Where do the pseudocounts come from?

The probability of observing the kth topic n times given the
parameter 6, is proportional to:

6.

The probability density of the parameter 6, given the
Dirichlet parameter a, is proportional to:

Qkak-1
So the product of these probabilities is proportional to:

an+ a1



Smoothing: A Bayesian perspective

Larger pseudocounts will bias the MAP estimate more heavily
Larger Dirichlet parameters concentrate the density around the mean

Larger a Smaller a




Asymmetric smoothing

We don’t have to smooth toward the uniform distribution




Asymmetric smoothing

We don’t have to smooth toward the uniform distribution

You might expect one topic to be very common in all
documents

0.080 a field emission an electron the
0.080 a the carbon and gas to an

0.080 the of a to and about at

0.080 of a surface the with in contact
0.080 the a and to is of liquid

Symmetric &

0.895 the a of toand is in

0.187 carbon nanotubes nanotube catalyst
0.043 sub is c or and n sup

0.061 fullerene compound fullerenes

0.044 material particles coating inorganic

Asymmetric &

from Hanna Wallach, David Mimno, Andrew McCallum. NIPS 20009.




“Negative” smoothing

- Dirichlet prior MAP estimation yields “a — 1" smoothing
- So what happens if a < 17?



Posterior inference

What if we don’t just want the parameters that
maximize the posterior?

p(B1:x,601.0, 210, W1:D)
p(wI:D)

What if we care about the entire posterior distribution?

- or at least the mean of the posterior distribution

p(,BlzK, olzDa 21:D I wl:D) -

Why?
- maybe the maximum doesn’t look like the rest

- other points of the posterior more likely to
generalize to data you haven’t seen before




Posterior inference

What if we don’t just want the parameters that
maximize the posterior?

p(,BlzK, 91:D, Z21:D, wl:D)
p(wlzD)
This is harder I

p(ﬂlK, 01:D, 21:D I wl'D) —

- Computing the denominator involves marginalizing over all
possible configurations of the hidden variables/parameters



Posterior inference: approximations

- Random sampling
- Monte Carlo methods

- Variational inference
- Optimization using EM-like procedure
- MAP estimation is a simple case of this



B
| didn't tell you...

- where the number of topics K comes from
- where the Dirichlet parameters a and n come from



Extensions

- n-grams
- topic hierarchies
- supervision

- can you think of other ideas?



