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Abstract

We introduce a theoretical analysis of
crosslingual transfer in probabilistic topic
models. By formulating posterior inference
through Gibbs sampling as a process of lan-
guage transfer, we propose a new measure
that quantifies the loss of knowledge across
languages during this process. This mea-
sure enables us to derive a PAC-Bayesian
bound that elucidates the factors affecting
model quality, both during training and in
downstream applications. We provide ex-
perimental validation of the analysis on a
diverse set of five languages, and discuss
best practices for data collection and model
design based on our analysis.

1 Introduction

Crosslingual learning is an important area of
natural language processing that has driven
applications including text mining in multiple
languages (Ni et al., 2009; Smet and Moens,
2009), cultural difference detection (Gutiérrez
et al., 2016), and various linguistic stud-
ies (Shutova et al., 2017; Barrett et al., 2016).
Crosslingual learning methods generally ex-
tend monolingual algorithms by using various
multilingual resources. In contrast to tradi-
tional high-dimensional vector space models,
modern crosslingual models tend to rely on
learning low-dimensional word representations
that are more efficient and generalizable.
A popular approach to representation learn-

ing comes from the word embedding commu-
nity, in which words are represented as vectors
in an embedding space shared by multiple lan-
guages (Ruder et al., 2018; Faruqui and Dyer,
2014; Klementiev et al., 2012). Another di-
rection is from the topic modeling community,
where words are projected into a probabilis-
tic topic space (Ma and Nasukawa, 2017; Ja-

garlamudi and III, 2010). While formulated
differently, both types of models apply the
same principles—low-dimensional vectors ex-
ist in a shared crosslingual space, wherein vec-
tor representations of similar concepts across
languages (e.g., “dog” and “hund”) should be
nearby in the shared space.

To enable crosslingual representation learn-
ing, knowledge is transferred from a source
language to a target language, so that rep-
resentations have similar values across lan-
guages. In this study, we will focus on prob-
abilistic topic models, and “knowledge” refers
to a word’s probability distribution over top-
ics. Little is known about the characteristics of
crosslingual knowledge transfer in topic mod-
els, and thus this paper provides an analysis,
both theoretical and empirical, of crosslingual
transfer in multilingual topic models.

1.1 Background and Contributions

Multilingual Topic Models Given a mul-
tilingual corpus D(1,...,L) in languages ℓ =
1, . . . , L as inputs, a multilingual topic model
learns K topics. Each multilingual topic
k(1,...,L) (k = 1, . . . ,K), is defined as an L-

dimensional tuple
(
ϕ
(1)
k , . . . , ϕ

(L)
k

)
, where ϕ

(ℓ)
k

is a multinomial distribution over the vocab-
ulary V (ℓ) in language ℓ. From a human’s
perspective, a multilingual topic k(1,...,L) can
be interpreted by looking at the word types

that have C highest probabilities in ϕ
(ℓ)
k for

each language ℓ. C here is called cardinality
of the topic. Thus, a multilingual topic can
loosely be thought of as a group of word lists
where each language ℓ has its own version of
the topic.

Multilingual topic models are generally ex-
tended from Latent Dirichlet Allocation (Blei
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et al., 2003, lda). Though many variations
have been proposed, the underlying struc-
tures of multilingual topic models are sim-
ilar. These models require either a paral-
lel/comparable corpus in multiple languages,
or word translations from a dictionary. One
of the most popular models is the polylin-
gual topic model (Mimno et al., 2009, pltm),
where comparable document pairs share dis-
tributions over topics θ, while each language

ℓ has its own distributions {ϕ(ℓ)
k }Kk=1 over the

vocabulary V (ℓ). By re-marginalizing the es-

timations {ϕ̂(ℓ)
k }Kk=1, we obtain word represen-

tations φ̂(w) ∈ RK for each word w, where

φ̂
(w)
k = Pr(zw = k|w), i.e., the probability of

topic k given a word type w.

Crosslingual Transfer Knowledge transfer
through crosslingual representations has been
studied in prior work. Smet and Moens (2009)
and Heyman et al. (2016) show empirically
how document classification using topic mod-
els implements the ideas of crosslingual trans-
fer, but to date there has been no theoretical
framework to analyze this transfer process in
detail.

In this paper, we describe two types of
transfer—on-site and off-site—based on the
nature of where and how the transfer takes
place. We refer to transfer that happens while
training topic models (i.e., during representa-
tion learning) as on-site. Once we obtain the
low-dimensional representations, they can be
used for downstream tasks. We refer to trans-
fer in this phase as off-site, since the crosslin-
gual tasks are usually detached from the pro-
cess of representation learning.

Contributions Our study provides a theo-
retical analysis of crosslingual transfer learn-
ing in topic models. Specifically, we first for-
mulate on-site transfer as circular validation,
and derive an upper bound based on PAC-
Bayesian theories (Section 2). The upper
bound explicitly shows the factors that can
affect knowledge transfer. We then move on
to off-site transfer, and focus on crosslingual
document classification as a downstream task
(Section 3). Finally, we show experimentally
that the on-site transfer error can have impact
on the performance of downstream tasks (Sec-
tion 4).

2 On-Site Transfer

On-site transfer refers to the training pro-
cedure of multilingual topic models, which
usually involves Bayesian inference techniques
such as variational inference and Gibbs sam-
pling. Our work focuses on the analysis of col-
lapsed Gibbs sampling (Griffiths and Steyvers,
2004), showing how knowledge is transferred
across languages and how a topic space is
formed through the sampling process. To this
end, we first describe a specific formulation of
knowledge transfer in multilingual topic mod-
els as a starting point of our analysis (Sec-
tion 2.1). We then formulate Gibbs sampling
as circular validation and quantify a loss dur-
ing this phase (Section 2.2). This formulation
leads us to a PAC-Bayesian bound that explic-
itly shows the factors that affect the crosslin-
gual training (Section 2.3). Lastly, we look
further into different transfer mechanisms in
more depth (Section 2.4).

2.1 Transfer through Priors

Priors are an important component in
Bayesian models like pltm. In the original
generative process of pltm, each comparable
document pair (dS , dT ) in the source and tar-
get languages (S, T ) is generated by the same
multinomial θ ∼ Dir(α).

Hao and Paul (2018) showed that knowledge
transfer across languages happens through pri-
ors. Specifically, assume the source document
is generated from θdS ∼ Dir(α), and has a
sufficient statistics ndS ∈ NK where each cell
nk|dS is the count of topic k in document dS .
When generating the corresponding compara-
ble document dT , the Dirichlet prior of the dis-
tribution over topics θdT , instead of a symmet-
ric α, is parameterized by α+ndS . This formu-
lation yields the same posterior estimation as
the original joint model and is the foundation
of our analysis in this section.

To see this transfer process more clearly,
we look closer to the conditional distributions
during sampling, and take pltm as an exam-
ple. When sampling a token in target language
xT , the Gibbs sampler calculates a conditional
distribution PxT over K topics, where a topic
k is randomly drawn and assigned to xT (de-
noted as zxT ). Assume the token xT is in doc-
ument dT whose comparable document in the
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animal physiology extends the 
methods of human physiology to …

the physiology of yeast cells can 
apply to human cells. 

Source language S Target language T

and ignored the irrevocable biology 
laws of human nature. 

human human humanSwS =
�  

Djur är flercelliga organismer som 
kännetecknas av att de är rörliga 

Som heterotrofa organismer är 
djur inte självnärande, det vill säga 

De gener som förenar alla djur 
tros ha en gemensam

Topic 1
Topic 2

(1) Knowledge transfer
do

c 
1

do
c 

2
do

c 
3

(2) 
Reverse
validate

PxT

P
xS2SwS

Eh⇠PxT

⇥
1{h(xS) 6=zxS}

⇤

nwS

Figure 1: The Gibbs sampler is sampling the to-
ken “djur” (animal). Using the classifier hk sam-
pled from its conditional distribution PxT

, circular
validation evaluates hk on all the tokens of type
“human”.

source language is dS . The conditional distri-
bution for xT is

Px,k = Pr(zx = k;w−, z−) (1)

∝
(
nk|dT + nk|dS + α

)
·

nwT |k + β

n·|k + V (ℓ)β
,

where the quantity nk|dS is added and thus
transferred from the source document. Thus,
the calculation of Px incorporates the knowl-
edge transferred from the other language.

Now that we have identified the transfer
process, we provide an alternative view of
Gibbs sampling, i.e., circular validation, in the
next section.

2.2 Circular Validation

Circular validation (or reverse validation) was
proposed by Zhong et al. (2010) and Bruz-
zone and Marconcini (2010) in transfer learn-
ing. Briefly, a learning algorithm A is trained
on both source and target datasets (DS and
DT ), where the source is labeled and target is
unlabeled. After predicting the labels for the
target dataset using A (predictions denoted as
A(DT )), circular validation trains another al-
gorithm A′ in the reverse direction, i.e., uses
A(DT ) and DT as the labeled dataset and DS

as the unlabeled dataset. The error is then
evaluated on A′(DS). This “train-predict-
reverse-repeat” cycle has a similar flavor to the
iterative manner of Gibbs sampling, which in-
spires us to look at the sampling process as
circular validation.

Figure 1 illustrates this process. Suppose
the Gibbs sampler is currently sampling xT
of word type wT in target language T . As

discussed for Equation (1), the calculation of
the conditional distribution PxT incorporates
the knowledge transferred from the source lan-
guage. We then treat the process of drawing a
topic from PxT as a classification of the token
xT . Let PxT be a distribution over K unary
classifiers, {hk}Kk=1, and the k-th classifier la-
bels the token as topic k with a probability of
one:

hk ∼ PxT , and Pr (zxT = k;hk) = 1. (2)

This process is repeated between the two lan-
guages until the Markov chain converges.
The training of topic models is unsuper-

vised, i.e., there is no ground truth for labeling
a topic, which makes it difficult to analyze the
effect of transfer learning. Thus, after calcu-
lating PxT , we take an additional step called
reverse validation, where we design and cal-
culate a measure—circular validation loss—to
quantify the transfer.

Definition 1 (Circular validation loss, cvl).
Let Sw be the set containing all the tokens of
type w throughout the whole training corpus,
and call it the sample of w. Given a bilin-
gual word pair (wT , wS) where wT is in tar-
get language T while wS in source S, let SwT

and SwS be the samples for the two types re-
spectively, and nwT and nwS the sizes of them.
The empirical circular validation score (ĉvl)
is defined as

ĉvl(wT , wS) =
1

2
E

xS ,xT

[
L̂(xT , wS) + L̂(xS , wT )

]
,

L̂(xT , wS) =
1

nwS

∑
xS∈SwS

Eh∼PxT

[
1 {h(xS) ̸= zxS}

]
=

1

nwS

∑
xS∈SwS

(
1− PxT ,zxS

)
,

where PxT ,k is the conditional probability of to-
ken xT assigned with topic k. Taking expecta-
tions over all tokens xS and xT , we have gen-
eral cvl:

cvl(wT , wS) =
1

2
E

xS ,xT

[L(xT , wS) + L(xS , wT )] ,

L(xT , wS) = ExSEh∼PxT

[
1 {h(xS) ̸= zxS}

]
.

When sampling a token xT , we still follow
the two-step process as in Equation (2), but
instead of labeling xT itself, we use its condi-
tional PxT to label the entire sample of a word
type wS in the source language. Since all the
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topic labels for the source language are fixed,
we take them as the assumed “correct” label-
ings, and compare xS ’s labels and the predic-
tions from PxT . This is the intuition behind
cvl.

Note that the choice of word types wT and
wS to calculate ĉvl is arbitrary. However, ĉvl
is only meaningful when the two word types
are semantically related, such as word trans-
lations, because those word pairs are where
the knowledge transfer takes place. On the
other hand, the Gibbs sampler does not cal-
culate this ĉvl explicitly, and thus adding re-
verse validation step does not affect the train-
ing of the model. It does, however, help us
to expose and analyze the knowledge transfer
mechanism. In fact, as we show in the next
theorem, sampling is also a procedure of opti-
mizing ĉvl.

Theorem 1. Let ĉvl
(t)
(wT , wS) be the em-

pirical circular validation loss of any bilingual
word pair at iteration t of Gibbs sampling.

Then ĉvl
(t)
(wT , wS) converges as t → ∞.

Proof. See Appendix.

2.3 PAC-Bayes View

A question following the formulation of ĉvl is,
what factors could lead to better transfer dur-
ing this process, particularly for semantically
related words? To answer this, we turn to the-
ory that bounds the performance of classifiers
and apply this theory to this formulation of
topic sampling as classification.
The PAC-Bayes theorem was introduced by

McAllester (1999) to bound the performance
of Bayes classifiers. Given a hypothesis set H,
the majority vote classifier (or Bayes classifier)
uses every hypothesis h ∈ H to perform binary
classification on an example x, and uses the
majority output as the final prediction. Since
minimizing the error by Bayes classifier is NP-
hard, an alternative way is to use a Gibbs clas-
sifier as approximation. The Gibbs classifier
first draws a hypothesis h ∈ H according to
a posterior distribution over H, and then uses
this hypothesis to predict the label of an ex-
ample x (Germain et al., 2012). The gener-
alization loss of this Gibbs classifier can be
bounded as follows.

Theorem 2 (PAC-Bayes theorem, McAllester
(1999)). Let P be a posterior distribution over

all classifiers h ∈ H, and Q a prior distribu-
tion. With a probability at least 1− δ, we have

L ≤ L̂+

√
1

2n

(
KL (P||Q) + ln

2
√
n

δ

)
,

where L and L̂ are the general loss and the
empirical loss on a sample of size n.

In our framework, a token xT provides a
posterior PxT over K classifiers. The loss

L̂(xT , wS) is then calculated on a sample of
SwS in language S. The following theorem
shows that for a bilingual word pair (wT , wS),
the general cvl can be bounded with several
quantities.

Theorem 3. Given a bilingual word pair
(wT , wS), with probability at least 1 − δ, the
following bound holds:

cvl(wT , wS) ≤ ĉvl(wT , wS) + (3)

1

2

√
1

n

(
KLwT +KLwS + 2 ln

2

δ

)
+

lnn⋆

n
,

n = min
{
nwT , nwS

}
, n⋆ = max

{
nwT , nwS

}
.

For brevity we use KLw to denote KL(Px||Qx),
where Px is the conditional distribution from
Gibbs sampling of token x with word type w
that gives highest loss L̂(x,w), and Qx a prior.

Proof. See Appendix.

2.4 Multilevel Transfer

Recall that knowledge transfer happens
through priors in topic models (Section 2.1).
Because the KL-divergence terms in Theo-
rem 3 include this prior Q, we can use this
theorem to analyze the transfer mechanisms
more concretely.

The conditional distribution for sampling a
topic zx for a token x during sampling can be
factorized into document-topic and topic-word
levels:

Px,k = Pr (zx = k|wx = w,w−, z−)

= Pr (zx = k|z−) · Pr (wx = w|zx = k,w−, z−)

∝ Pr (zx = k|z−)︸ ︷︷ ︸
document level

·Pr (zx = k|wx = w,w−)︸ ︷︷ ︸
word level

∆
= Pθ,x,k · Pφ,x,k,

Px
∆
= Pθ,x ⊗ Pφ,x,
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where ⊗ is element-wise multiplication. Thus,
we have the following inequality:

KL (Px||Qx) = KL (Pθ,x ⊗ Pφ,x||Qθ,x ⊗Qφ,x)

≤ KL (Pθ,x||Qθ,x) + KL (Pφ,x||Qφ,x) ,

and the KL-divergence term in Theorem 3 is
simply the sum of the KL-divergences between
the conditional and prior distributions on all
levels.

Recall that pltm transfers knowledge at the
document level, through Qθ,x, by linking doc-
ument translations together (Equation (1)).
Assume the current token x is from a tar-
get document linked to a document dS in the
source language. Then the prior for Pθ,x is θ̂dS ,
i.e., the normalized empirical distribution over
topics of dS .

Since the words are generated within each

language under pltm, i.e., ϕ
(S)
k is irrelevant to

ϕ
(T )
k , no transfer happens at the word level. In

this case, Qφ,x, the prior for Pφ,x, is simply a
K-dimensional uniform distribution U . Then:

KLw ≤ KL
(
Pθ,x||θ̂(dS)

)
+KL (Pφ,x||U)

= KL
(
Pθ,x||θ̂(dS)

)
︸ ︷︷ ︸
crosslingual entropy

+ logK −H(Pφ,x)︸ ︷︷ ︸
monolingual entropy

.

Thus, at levels where transfer happens
(document- or word-level), a low crosslingual
entropy is preferred, to offset the impact of
monolingual entropy where no transfer hap-
pens.

Most multilingual topic models are gener-
ative admixture models in which the condi-
tional probabilities can be factorized into dif-
ferent levels, thus KL-divergence term in The-
orem 3 can be decomposed and analyzed in
the same way as in this section for models that
have transfer at other levels, such as Hao and
Paul (2018), Heyman et al. (2016), and Hu
et al. (2014). For example, if a model has
word-level transfer, i.e., the model assumes
that word translations share the same distri-
butions, we have a KL-divergence term as,

KLw ≤ KL
(
Pφ,x||φ̂(wS)

)
+KL(Pθ,x||U)

= KL
(
Pφ,x||φ̂(wS)

)
+ logK −H(Pθ,x),

where wS is the word translation to word w.

3 Off-Site Transfer

Off-site transfer refers to language transfer
that happens while applying trained topic
models to downstream crosslingual tasks such
as document classification. Because trans-
fer happens using the trained representations,
the performance of off-site transfer heavily de-
pends on that of on-site transfer. To analyze
this problem, we focus on the task of crosslin-
gual document classification.

In crosslingual document classification, a
document classifier, h, is trained on documents
from one language, and h is then applied to
documents from another language. Specifi-
cally, after training bilingual topic models, we

have K bilingual word distributions {ϕ̂(S)
k }Kk=1

and {ϕ̂(T )
k }Kk=1. These two distributions are

used to infer document-topic distributions θ̂
on unseen documents in the test corpus, and
each document is represented by the inferred
distributions. A document classifier is then
trained on the θ̂ vectors as features in source
language S and tested on the target T .

We aim to show how the generalization risk
on target languages T , denoted as RT (h), is re-
lated to the training risk on source languages
S, R̂S(h). To differentiate the loss and clas-
sifiers in this section from those in Section 2,
we use the term “risk” here, and h refers to
the document classifiers, not the topic label-
ing process by the sampler.

3.1 Languages as Domains

Classic learning theory requires training and
test sets to come from the same distribution D,
i.e., (θ, y) ∼ D, where θ is the document rep-
resentation (features) and y the document la-
bel (Valiant, 1984). In practice, however, cor-
pora in S and T may be sampled from different
distributions, i.e., D(S) = {(θ̂(dS), y)} ∼ D̂(S)

and D(T ) = {(θ̂(dT ), y)} ∼ D̂(T ). We refer to
these distributions as document spaces. To re-
late RT (h) and R̂S(h), therefore, we have to
take their distribution bias into consideration.
This is often formulated as a problem of do-
main adaptation, and here we can formulate
this such that each language is treated as a
“domain”.

We follow the seminal work by Ben-David
et al. (2006), and define H-distance as follows.
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Definition 2 (H-distance, Ben-David et al.
(2006)). Let H be a symmetric hypothesis
space, i.e., for every hypothesis h ∈ H there
exists its counterpart 1 − h ∈ H. We let
m =

∣∣D(S)
∣∣+ ∣∣D(T )

∣∣, the total size of test cor-

pus. The H-distance between D̂(S) and D̂(T ) is
defined as

1

2
d̂H

(
D̂(S), D̂(T )

)
= max

h∈H

1

m

∑
ℓ∈{S,T}

∑
xd:h(xd)=ℓ

1
{
xd ∈ D(ℓ)

}
,

where xd is the representation for document
d, and h(xd) outputs the language of this doc-
ument.

This distance measures how identifiable
the languages are based on their represen-
tations. If source and target languages are
from entirely different distributions, a classi-
fier can easily identify language-specific fea-
tures, which could affect performance of the
document classifiers.
With H-distances, we have a measure of the

“distance” between the two distributions D̂(S)

and D̂(T ). We state the following theorem
from domain adaptation theory.

Theorem 4 (Ben-David et al. (2006)). Let m
be the corpus size of the source language, i.e.,
m =

∣∣D(S)
∣∣, c the VC-dimension of document

classifiers h ∈ H, and d̂H

(
D̂(S), D̂(T )

)
the H-

distance between two languages in the docu-
ment space. With probability at least 1− δ, we
have the following bound,

RT (h) ≤ R̂S(h) + d̂H

(
D̂(S), D̂(T )

)
+ λ̂+√

4

m

(
c log

2em

c
+ log

4

δ

)
, (4)

λ̂ = min
h∈H

R̂S(h) + R̂T (h). (5)

The term λ̂ in Theorem 4 defines a joint
risk, i.e., the training error on both source and
target documents. This term usually cannot
be estimated in practice since the labels for
target documents are unavailable. However,
we can still calculate this term for the purpose
of analysis.
The theorem shows that the crosslingual

classification risk is bounded by two critical
components: theH-distance, and the joint risk

λ̂. Interestingly, these two quantities are based
on the same set of features with different la-
beling rules: for H-distance, the label for each
instance is its language, while λ̂ uses the actual
document label. Therefore, a better bound re-
quires the consistency of features across lan-
guages, both in language and document label-
ings.

3.2 From Words to Documents

Since consistency of features depends on the
document representations θ̂, we need to trace
back to the upstream training of topic models
and show how the errors propagate to the for-
mation of document representations. Thus, we
first show the relations between ĉvl and word
representations φ̂ in the following lemma.

Lemma 1. Given any bilingual word pair
(wT , wS), let φ̂

(w) denote the distribution over
topics of word type w. Then we have,

1− φ̂(wT )⊤ · φ̂(wS) ≤ ĉvl(wT , wS).

Proof. See Appendix.

We need to connect the word representa-
tions φ̂, which are central to on-site transfer,
to the document representations θ̂, which are
central to off-site transfer. To do this, we make
an assumption that the inferred distribution
over topics θ̂(d) for each test document d is a
weighted average over all word vectors, i.e.,
θ̂(d) ∝

∑
w fd

w · φ̂(w), where fd
w is the normal-

ized frequency of word w in document d (Arora
et al., 2013). When this assumption holds, we
can bound the similarity of document repre-
sentations θ̂(dS) and θ̂(dT ) in terms of word rep-
resentations and hence their ĉvl.

Theorem 5. Let θ̂(dS) be the distribution over
topics for document dS (similarly for dT ),

F (dS , dT ) =
(∑

wS
fdS
wS

2 ·
∑

wT
fdT
wT

2
) 1

2
where

fd
w is the normalized frequency of word w in
document d, and K the number of topics.
Then

θ̂(dS)⊤ · θ̂(dT )

≤ F (dS , dT ) ·
√
K ·

∑
wS ,wT

(
ĉvl(wT , wS)− 1

)2
.

Proof. See Appendix.
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This provides a spatial connection between
document pairs and word pairs they have.
Many kernalized classifiers such as support
vector machines (svm) explicitly use this in-
ner product in the dual optimization objec-
tive (Platt, 1998). Since the inner product is
directly related to the cosine similarity, The-
orem 5 indicates that if two documents are
spatially close, their inner product should be
large, and thus the ĉvl of all word pairs they
share should be small. In an extreme case,
if ĉvl(wT , wS) = 1 for all the bilingual word
pairs appearing in document pair (dS , dT ),
then θ̂(dS)⊤ · θ̂(dT ) = 0, meaning the two docu-
ments are orthogonal and tend to be irrelevant
topically.

With upstream training discussed in Sec-
tion 2, we see that ĉvl has an impact on the
consistency of features across languages. A
low ĉvl indicates that the transfer from source
to target is sufficient in two ways. First, lan-
guages share similar distributions, and there-
fore, it is harder to distinguish languages based
on their distributions. Second, if there exists
a latent mapping from a distribution to a la-
bel, it should produce similar labeling on both
source and target data since they are similar.
These two aspects correspond to the language
H-distance and joint risk λ̂ in Theorem 4.

4 Experiments

We experiment with five languages: Arabic
(ar, Semitic), German (de, Germanic), Span-
ish (es, Romance), Russian (ru, Slavic), and
Chinese (zh, Sinitic). In the first two exper-
iments, we pair each with English (en, Ger-
manic) and train pltm on each language pair
individually.

Training Data For each language pair, we
use a subsample of 3,000 Wikipedia compara-
ble documents, i.e., 6,000 documents in total.
We set K = 50, and train pltm with default
hyperparameters (McCallum, 2002). We run
each experiment five times and average the re-
sults.

Test Data For experiments with document
classification, we use Global Voices (gv) in all
five language pairs as test sets. Each doc-
ument in this dataset has a “categories” at-
tribute that can be used as the document la-

bel. In our classification experiments, we use
culture, technology, and education as the labels
to perform multiclass classification.

Evaluation To evaluate topic qualities, we
use Crosslingual Normalized Pointwise Mutual
Information (Hao et al., 2018, cnpmi), an in-
trinsic metric of crosslingual topic coherence.
For any bilingual word pair (wT , wS),

cnpmi(wT , wS) = −
log Pr(wT ,wS)

Pr(wT ) Pr(wS)

log Pr (wT , wS)
, (6)

where Pr (wT , wS) is the occurrence of wT and
wS appearing in the same pair of comparable
documents. We use 10,000 Wikipedia com-
parable document pairs outside pltm train-
ing data for each language pair to calculate
cnpmi scores. All datasets are publicly avail-
able at http://opus.nlpl.eu/ (Tiedemann,
2012). Additional details of our datasets and
experiment setup can be found in the ap-
pendix.

4.1 Sampling as Circular Validation

Our first experiment shows how ĉvl changes
over time during Gibbs sampling. According
to the definition, the arguments of ĉvl can
include any bilingual word pairs; however, we
suggest that it should be calculated specifi-
cally among word pairs that are expected to
be related (and thus enable transfer). In our
experiments, we select word pairs in the fol-
lowing way.

Recall that the output of a bilingual topic
model is K topics, where each language has
its own distribution. For each topic k, we can
calculate ĉvl(wS , wT ) such that wS and wT

belong to the same topic (i.e., are in the top
C most probable words in that topic), from
the two languages, respectively. Using a car-
dinality C for each of the K topics, we have
in total C2 × K bilingual word pairs in the
calculation of ĉvl.

At certain iterations, we collect the topic
words as described above with cardinality C =
5, and calculate ĉvl(wT , wS), cnpmi(wT , wS),
and the error term (the 1

2

√
· · · term in Theo-

rem 3) of all the bilingual word pairs. In the
middle panel of Figure 2, ĉvl over all word
pairs from topic words is decreasing as sam-
pling proceeds and becomes stable by the end

7
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Figure 2: As Gibbs sampling progresses, ĉvl of topic words drops, which leads to higher quality topics,
and thus increases cnpmi. The left panel shows this negative correlation, and we use shades to indicate
standard deviations across five chains.

of sampling. On the other hand, the correla-
tions between cnpmi and ĉvl are constantly
decreasing. The negative correlations between
ĉvl and cnpmi implies that lower ĉvl is asso-
ciated with higher topic quality, since higher-
quality topic has higher cnpmi but lower ĉvl.

4.2 What the PAC-Bayes Bound
Shows

Theorem 3 provides insights into how knowl-
edge is transferred during sampling and the
factors that could affect this process. We an-
alyze this bound from two aspects, the size of
the training data (corresponding to lnn⋆

n term)
and model assumptions (as in the crosslingual
entropy terms).

4.2.1 Training Data: Downsampling

One factor that could affect ĉvl, according to
Theorem 3, is the balance of tokens of a word
pair. In an extreme case, if a word type wS has
only one token, while another word type wT

has a large number of tokens, the transfer from
wS to wT is negligible. In this experiment, we
will test if increasing the ratio term lnn⋆

n in the
corpus lowers the performance of crosslingual
transfer learning.
To this end, we specify a sample rate ρ =

0.2, 0.4, 0.6, 0.8, and 1.0. For each word pair
(wT , wS), we calculate n as in the ratio term
lnn⋆

n , and remove (1−ρ)·n tokens from the cor-
pus (rounded to the nearest integer). Smaller
ρ removes more tokens from the corpus and
thus yields a larger ratio term on average.

We use a dictionary from Wiktionary to col-
lect word pairs, where each word pair (wS , wT )
is a translation pair. Figure 3 shows the re-
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Figure 3: Increasing ρ results in smaller values of
lnn⋆

n for translation pairs. Topic quality, evaluated
by cnpmi, increases as well.

sults of downsampling using these two meth-
ods. Decreasing the sample rate ρ lowers the
topic qualities. This implies that although
pltm can process comparable corpora, which
need not be exact translations, one still needs
to be careful about the token balance between
linked document pairs.

For many low-resource languages, the tar-
get language corpus is much smaller than the
source corpus, so the effect of this imbalance is
important to be aware of. This is an important
issue when choosing comparable documents,
and Wikipedia is an illustrative example. Al-
though one can collect comparable documents
via Wikipedia’s inter-language links, articles
under the same title but in different languages
can have very large variations on document
length, causing the imbalance of samples lnn⋆

n ,
and thus potentially suboptimal performance
of crosslingual training.
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Figure 4: Each dot is a (en,de) word pair, and its
color shows corresponding values of the indicated
quantity.

4.2.2 Model Assumptions

Recall that the crosslingual entropy term can
be decomposed into different levels, e.g., doc-
ument level and word level, and we prefer a
model with low crosslingual entropy but high
monolingual entropy. In this experiment, we
show how these two quantities affect the topic
qualities, using English-German (en-de) doc-
uments as an example.

Given pltm output in (en,de) and a car-
dinality C = 5, we collect C2 × K bilingual
word pairs as described in Section 4.1. For
each word pair, we calculate three quantities:
ĉvl, cnpmi, and the inner product of the word
representations. In Figure 4, each dot is a
word pair (wS , wT ) colored by the values of
these quantities. The word pair dots are po-
sitioned by their crosslingual and monolingual
entropies.

We observe that ĉvl decreases with
crosslingual entropy on document level. The
larger the crosslingual entropy, the harder it
is to get a low ĉvl because it needs larger
monolingual entropy to decrease the bound,
as shown in Section 2.4. On the other hand,
the inner product of word pairs shows an op-
posite pattern of ĉvl, indicating a negative
correlation (Lemma 1). In Figure 2 we see the
correlation between cnpmi and ĉvl is around
−0.4 at the end of sampling, so there are fewer
clear patterns for cnpmi in Figure 4. How-
ever, we also notice that the word pairs with
higher cnpmi scores often appear at the bot-
tom where crosslingual entropy is low while
the monolingual entropy is high.

4.3 Downstream Task

We move on to crosslingual document clas-
sification as a downstream task. At various
iterations of Gibbs sampling, we infer topics
on the test sets for another 500 iterations and
calculate the quantities shown in the Figure 5
(averaged over all languages), including theH-
distances for both training and test sets, and
the joint risk λ̂.

We treat English as the source language and
train support vector machines to obtain the
best classifier h⋆ that fits the English docu-
ments. This classifier is then used to calcu-
late the source and target risks R̂S(h

⋆) and
R̂T (h

⋆). We also include 1
2 d̂H (S, T ), the H-

distance based on word representations φ̂. As
mentioned in Section 3.1, we train support vec-
tor machines to use languages as labels, and
the accuracy score as the H-distance.

The classification risks, such as R̂S(h
⋆),

R̂T (h
⋆), and λ̂, are decreasing as expected (up-

per row in Figure 5), which shows very similar
trends as ĉvl in Figure 2. On the other hand,
we notice that the H-distances of training doc-

uments and vocabularies, 1
2 d̂H

(
D̂(S), D̂(T )

)
and 1

2 d̂H (S, T ), stabilize around 0.5 to 0.6,
meaning it is difficult to differentiate the lan-
guages based on their representations. Inter-
estingly, theH-distances of test documents are
at a less ideal value, although they are slightly
decreasing in most of the languages except ar.
However, recall that the target risk also de-
pends on other factors than H-distance (The-
orem 4), and we use Figure 6 to illustrate this
point.

We further explore the relationship between
the predictability of languages vs document
classes in Figure 6. We collect documents that
have been correctly classified for both docu-
ment class labels and language labels, from
which we randomly choose 200 documents for
each language, and use θ̂ to plot t-SNE scat-
terplots. Note that the two plots are from the
same set of documents, and so the spatial re-
lations between any two points are fixed, but
we color them with different labelings. Al-
though the classifier can identify the languages
(right panel), the features are still consistent,
because on the left panel, the decision bound-
ary changes its direction and also successfully
classifies the documents based on their actual

9
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Figure 5: Gibbs sampling optimizes ĉvl, which decreases the joint risk λ̂ and H-distances for test data.

Labeling: document class Labeling: language

English (EN)
Chinese (ZH)

technology
non-technology

Figure 6: Although the classifier identifies the
languages (right), the features are still consistent
based on actual document class (left).

label class. This illustrates why a single H-
distance does not necessarily mean inconsis-
tent features across languages and high target
risks.

5 Conclusions and Future
Directions

This study gives new insights into crosslingual
transfer learning in multilingual topic models.
By formulating the inference process as a cir-
cular validation, we derive a PAC-Bayesian
theorem to show the factors that affect the
success of crosslingual learning. We also con-
nect topic model learning with downstream
crosslingual tasks to show how errors propa-
gate.

As the first step toward more theoreti-
cally justified crosslingual transfer learning,

our study suggests considerations for con-
structing crosslingual transfer models in gen-
eral. For example, an effective model should
strengthen crosslingual transfer while mini-
mizing non-transferred components, use a bal-
anced dataset or specific optimization algo-
rithms for low-resource languages, and sup-
port evaluation metrics that relate to cvl.
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Extracting Multilingual Topics from Unaligned
Comparable Corpora. In Advances in Infor-
mation Retrieval, 32nd European Conference on
IR Research, ECIR 2010, Milton Keynes, UK,
March 28-31, 2010. Proceedings, pages 444–456.

Alexandre Klementiev, Ivan Titov, and Binod
Bhattarai. 2012. Inducing Crosslingual Dis-
tributed Representations of Words. In COLING
2012, 24th International Conference on Com-
putational Linguistics, Proceedings of the Con-
ference: Technical Papers, 8-15 December 2012,
Mumbai, India, pages 1459–1474.

Tengfei Ma and Tetsuya Nasukawa. 2017. Inverted
Bilingual Topic Models for Lexicon Extraction
from Non-parallel Data. In Proceedings of the
Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 4075–4081.

David A. McAllester. 1999. PAC-Bayesian Model
Averaging. In Proceedings of the Twelfth Annual
Conference on Computational Learning Theory,
COLT 1999, Santa Cruz, CA, USA, July 7-9,
1999, pages 164–170.

Andrew Kachites McCallum. 2002. MALLET: A
Machine Learning for Language Toolkit.

David M. Mimno, Hanna M. Wallach, Jason
Naradowsky, David A. Smith, and Andrew Mc-
Callum. 2009. Polylingual Topic Models. In
Proceedings of the 2009 Conference on Empir-
ical Methods in Natural Language Processing,
EMNLP 2009, 6-7 August 2009, Singapore, A
meeting of SIGDAT, a Special Interest Group of
the ACL, pages 880–889.

Xiaochuan Ni, Jian-Tao Sun, Jian Hu, and Zheng
Chen. 2009. Mining Multilingual Topics from
Wikipedia. In Proceedings of the 18th Interna-
tional Conference on World Wide Web, WWW
2009, Madrid, Spain, April 20-24, 2009, pages
1155–1156.

John Platt. 1998. Sequential minimal optimiza-
tion: A fast algorithm for training support vec-
tor machines. Technical report.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
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A Notation

Notation Description

S, T Source and target languages. They are interchangeable during Gibbs sam-
pling. For example, when training English and German, English can be either
source or target.

wℓ A word type of language ℓ.

xℓ An individual token of language ℓ.

zxℓ
The topic assignment of token xℓ.

Swℓ
The sample of word type wℓ, the set containing all the tokens xℓ that are of
this word type.

Pxℓ
, Pxℓ,k Pxℓ

denotes the conditional distribution over all topics for token xℓ. The
conditional probability of sampling a topic k from Pxℓ

is denoted as Pxℓ,k.

D(ℓ) The set of documents in language ℓ. This usually refers to the test corpus.

D̂(ℓ) The array of document representations from the corpus D(ℓ) and their doc-
ument labels.

ϕ̂
(ℓ)
k The empirical distribution over vocabulary of language ℓ for topic k =

1, . . . ,K.

φ̂(w) The word representation, i.e., the empirical distribution over K topics for a

word type w. This can be obtained by re-normalizing ϕ̂
(ℓ)
k .

θ̂(d) The document representation, i.e., the empirical distribution over K topics
for a document d.

B Proofs

Theorem 1. Let ĉvl
(t)
(wT , wS) be the empirical circular validation loss of any bilingual word

pair at iteration t of Gibbs sampling. Then ĉvl
(t)
(wT , wS) converges as t → ∞.

Proof. We first notice the triangle inequality:∣∣∣ĉvl(t)(wT , wS)− ĉvl
(t−1)

(wT , wS)
∣∣∣ (1)

=

∣∣∣∣ E
xS ,xT

[
L̂(t)(xT , wS) + L̂(t)(xS , wT )

]
− E

xS ,xT

[
L̂(t−1)(xT , wS) + L̂(t−1)(xS , wT )

]∣∣∣∣ (2)

=

∣∣∣∣∣ E
xT∈SwT

[
L̂(t)(xT , wS)

]
+ E

xS∈SwS

[
L̂(t)(xS , wT )

]
− E

xT∈SwT

[
L̂(t−1)(xT , wS)

]
− E

xS∈SwS

[
L̂(t−1)(xS , wT )

]∣∣∣∣∣
(3)
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≤

∣∣∣∣∣ E
xT∈SwT

[
L̂(t)(xT , wS)

]
− E

xT∈SwT

[
L̂(t−1)(xT , wS)

]
+ E

xS∈SwS

[
L̂(t)(xS , wT )

]
− E

xS∈SwS

[
L̂(t−1)(xS , wT )

]∣∣∣∣∣
(4)

≡

∣∣∣∣∣∆ E
xT∈SwT

[
L̂(xT , wS)

]
+∆ E

xS∈SwS

[
L̂(xS , wT )

]∣∣∣∣∣ (5)

≤

∣∣∣∣∣∆ E
xT∈SwT

[
L̂(xT , wS)

]∣∣∣∣∣+
∣∣∣∣∣∆ E

xS∈SwS

[
L̂(xS , wT )

]∣∣∣∣∣ (6)

We look at the first term of Equation (6), and the other term can be derived in the same way.

We use PxT to denote the invariant distribution of the conditional P(t)
xT as t → ∞. Additionally,

let PxT ,zxS
be the conditional probability for the token xT being assigned to topic zxS :

PxT ,zxS
= Pr (k = zxS ;w = wxT , z−,w−) . (7)

Another assumption we made is once the source language is converged, we keep the states of it

fixed. That is, z
(t)
xS = z

(t−1)
xS , and only sample the target language. Taking the difference between

the expectation at iterations t and t− 1, we have

lim
t→∞

∣∣∣∣∣∆ E
xT∈SwT

[
L̂(xT , wS)

]∣∣∣∣∣ (8)

= lim
t→∞

∣∣∣∣∣ E
xT∈SwT

[
L̂(t)(xT , wS)

]
− E

xT∈SwT

[
L̂(t−1)(xT , wS)

]∣∣∣∣∣ (9)

= lim
t→∞

∣∣∣∣∣∣ E
xT∈SwT

 1

nwS

∑
xS∈SwS

E
h∼P(t)

xT

1
{
h(xS) ≠ z(t)xS

}
− E

xT∈SwT

 1

nwS

∑
xS∈SwS

E
h∼P(t−1)

xT

1
{
h(xS) ̸= z(t−1)

xS

}∣∣∣∣∣∣
(10)

= lim
t→∞

1

nwS

∑
xS∈SwS

E
xT∈SwT

[∣∣∣∣Eh∼P(t)
xT

1
{
h(xS) ̸= z(t)xS

}
− E

h∼P(t−1)
xT

1
{
h(xS) ̸= z(t−1)

xS

}∣∣∣∣]
(11)

= lim
t→∞

1

nwS

∑
xS∈SwS

E
xT∈SwT

[∣∣∣∣Eh∼P(t)
xT

1 {h(xS) ̸= zxS} − E
h∼P(t−1)

xT

1 {h(xS) ̸= zxS}
∣∣∣∣] (12)

= lim
t→∞

1

nwS

∑
xS∈SwS

ExT∈SwT

[∣∣∣(1− P(t)
xT ,zxS

)
−
(
1− P(t−1)

xT ,zxS

)∣∣∣] (13)

= lim
t→∞

1

nwS

∑
xS∈SwS

ExT∈SwT

[∣∣∣P(t−1)
xT ,zxS

− P(t)
xT ,zxS

∣∣∣] (14)

= lim
t→∞

1

nwS

∑
xS∈SwS

ExT∈SwT

[∣∣∣PxT ,zxS
− PxT ,zxS

∣∣∣] = 0. (15)

Therefore, we have

lim
t→∞

∣∣∣ĉvl(t)(wT , wS)− ĉvl
(t−1)

(wT , wS)
∣∣∣ (16)

≤ lim
t→∞

∣∣∣∣∣∆ E
xT∈SwT

[
L̂(xT , wS)

]∣∣∣∣∣+
∣∣∣∣∣∆ E

xS∈SwS

[
L̂(xS , wT )

]∣∣∣∣∣ = 0. (17)
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Theorem 3. Given a bilingual word pair (wT , wS), with probability at least 1− δ, the following
bound holds:

cvl(wT , wS) ≤ ĉvl(wT , wS) +
1

2

√
1

n

(
KLwT +KLwS + 2 ln

2

δ

)
+

(
lnn⋆

n

)
, (18)

n = min
{
nwT , nwS

}
, n⋆ = max

{
nwT , nwS

}
. (19)

For brevity we use KLw to denote KL(Px||Qx), where Px is the conditional distribution from
Gibbs sampling of token x with word type w that gives highest loss L̂(x,w), and Qx a prior.

Proof. From Theorem 2, for target language, with probability at least 1− δ,

L(xT , wS) ≤ L̂(xT , wS) +

√
1

2nwS

(
KL (PxT ||QxT ) + ln

2
√
nwS

δ

)
(20)

= L̂(xT , wS) +

√
1

2nwS

(
KL (PxT ||QxT ) + ln

2

δ
+

1

2
lnnwS

)
(21)

≡ L̂(xT , wS) + ϵ(xT , wS). (22)

For the source language, similarly, with probability at least 1− δ,

L(xS , wT ) ≤ L̂(xS , wT ) +

√
1

2nwT

(
KL (PxS ||QxS ) + ln

2

δ
+

1

2
lnnwT

)
(23)

≡ L̂(xS , wT ) + ϵ(xS , wT ). (24)

Given a word type wT , we notice that only the KL-divergence term in ϵ(xT , wS) varies among
different tokens xT . Thus, we use KLwS and KLwT to denote the maximal values of KL-
divergence over all the tokens,

KLwS = KL
(
Px⋆

T
||Qx⋆

T

)
, x⋆T = argmax

xT∈SwT

ϵ(xT , wS); (25)

KLwT = KL
(
Px⋆

S
||Qx⋆

S

)
, x⋆S = argmax

xS∈SwS

ϵ(xS , wT ). (26)

Let n = min {nwT , nwS}, and n⋆ = max {nwT , nwS}. Due to the fact that
√
x+

√
y ≤ 2√

2

√
x+ y

for x, y > 0, we have

cvl(wT , wS) (27)

=
1

2
E

xS ,xT

[L(xT , wS) + L(xS , wT )] (28)

=
1

2
(ExTL(xT , wS) + ExSL(xS , wT )) (29)

≤ 1

2

(
ExT∈SwT

L̂(xT , wS) + ExS∈SwS
L̂(xS , wT )

)
(30)

+
1

2

(
ExT∈SwT

ϵ(xT , wS) + ExS∈SwS
ϵ(xS , wT )

)
(31)

= ĉvl(wT , wS) +
1

2

(
ExT∈SwT

ϵ(xT , wS) + ExS∈SwS
ϵ(xS , wT )

)
(32)

≤ ĉvl(wT , wS) +
1

2
(ϵ(x⋆T , wS) + ϵ(x⋆S , wT )) (33)

≤ ĉvl(wT , wS) (34)
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+
1

2

(√
1

2nwT

(
KLwT + ln

2

δ
+

1

2
lnnwT

)
(35)

+

√
1

2nwS

(
KLwS + ln

2

δ
+

1

2
lnnwS

))
(36)

≤ ĉvl(wT , wS) +
1

2

√
1

n

(
KLwT +KLwS + 2 ln

2

δ

)
+

(
ln (nwT · nwS )

2n

)
(37)

≤ ĉvl(wT , wS) +
1

2

√
1

n

(
KLwT +KLwS + 2 ln

2

δ

)
+

(
lnn⋆

n

)
, (38)

which gives us the result.

Lemma 1. Given any bilingual word pair (wT , wS), let φ̂
(w) denote the distribution over topics

of word type w. Then we have,

1− φ̂(wT )⊤ · φ̂(wS) ≤ ĉvl(wT , wS).

Proof. We expand the equation of ĉvl as follows,

ĉvl(wT , wS) (39)

=
1

2
E

xS ,xT

[
L̂(xT , wS) + L̂(xS , wT )

]
(40)

=
1

2

(
ExT

[
L̂(xT , wS)

]
+ ExS

[
L̂(xS , wT )

])
(41)

=
1

2

(∑
xT∈SwT

∑
xS∈SwS

Eh∼PxT

[
1 {h(xS) ̸= zxS}

]
nwT · nwS

(42)

+

∑
xS∈SwS

∑
xT∈SwT

Eh∼PxS

[
1 {h(xT ) ̸= zxT }

]
nwS · nwT

)
(43)

=
1

2

∑xT∈SwT

∑
xS∈SwS

(
1− PxT ,zxS

)
nwT · nwS

+

∑
xS∈SwS

∑
xT∈SwT

(
1− PxS ,zxT

)
nwS · nwT

 (44)

= 1− 1

2

(∑
xT∈SwT

∑
xS∈SwS

PxT ,zxS

nwT · nwS

+

∑
xS∈SwS

∑
xT∈SwT

PxS ,zxT

nwS · nwT

)
(45)

= 1− 1

2

K∑
k=1

(
nk|wS

·
∑

xT∈SwT
PxT ,k

nwT · nwS

+
nk|wT

·
∑

xS∈SwS
PxS ,zxT

nwS · nwT

)
(46)

= 1− 1

2

K∑
k=1

(
φ̂
(wS)
k ·

∑
xT∈SwT

PxT ,k

nwT

+ φ̂
(wT )
k ·

∑
xS∈SwS

PxS ,zxT

nwS

)
(47)

≥ 1− 1

2

K∑
k=1

(
φ̂
(wS)
k ·

nk|wT

nwT

+ φ̂
(wT )
k ·

nk|wS

nwS

)
(48)

= 1− 1

2

K∑
k=1

(
φ̂
(wS)
k · φ̂(wT )

k + φ̂
(wT )
k · φ̂(wS)

k

)
(49)

= 1− φ̂(wS)⊤ · φ̂(wT ) (50)

which concludes the proof.

16



Theorem 5. Let θ̂(dS) be the distribution over topics for document dS (similarly for dT ),

F (dS , dT ) =
(∑

wS
fdS
wS

2 ·
∑

wT
fdT
wT

2
) 1

2
where fd

w is the normalized frequency of word w in doc-

ument d, and K the number of topics. Then

θ̂(dS)⊤ · θ̂(dT ) ≤ F (dS , dT ) ·
√

K ·
∑

wS ,wT

(
ĉvl(wT , wS)− 1

)2
.

Proof. We first expand the inner product of θ̂S
⊤
· θ̂T as follows,

θ̂(dS)⊤ · θ̂(dT ) =
K∑
k=1

θ̂
(dS)⊤
k · θ̂(dT )

k (51)

=

K∑
k=1

 ∑
wS∈V (S)

fdS
wS

· φ̂(wS)
k

 ·

 ∑
wT∈V (T )

fdT
wT

· φ̂(wT )
k

 (52)

≤ F (dS , dT ) ·
K∑
k=1


 ∑

wS∈V (S)

φ̂
(wS)

2

k

 1
2

·

 ∑
wT∈V (T )

φ̂
(wT )2

k

 1
2

 , (53)

F (dS , dT ) =

 ∑
wS∈V (S)

fdS
wS

2

 1
2

·

 ∑
wT∈V (T )

fdT
wT

2

 1
2

, (54)

where F (dS , dT ) is a constant independent of topic k, and the last inequality due to Hölder’s.
We then focus on the topic-dependent part of the last inequality.

K∑
k=1


 ∑

wS∈V (S)

φ̂
(wS)

2

k

 1
2

·

 ∑
wT∈V (T )

φ̂
(wT )2

k

 1
2

 (55)

=
K∑
k=1

( ∑
wS ,wT

(
φ̂
(wS)
k · φ̂(wT )

k

)2) 1
2

(56)

≤
√
K ·

(
K∑
k=1

∑
wS ,wT

(
φ̂
(wS)
k · φ̂(wT )

k

)2) 1
2

(57)

=
√
K ·

( ∑
wS ,wT

K∑
k=1

(
φ̂
(wS)
k · φ̂(wT )

k

)2) 1
2

(58)

≤
√
K ·

 ∑
wS ,wT

(
K∑
k=1

φ̂
(wS)
k · φ̂(wT )

k

)2
 1

2

(59)

=
√
K ·

( ∑
wS ,wT

(
φ̂(wT )⊤ · φ̂(wS)

)2) 1
2

. (60)

Thus, we have the following inequality:

θ̂(dS)⊤ · θ̂(dT ) ≤ F (dS , dT ) ·
√
K ·

( ∑
wS ,wT

(
φ̂(wT )⊤ · φ̂(wS)

)2) 1
2

. (61)
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Plug in Lemma 1, we see that

θ̂(dS)⊤ · θ̂(dT ) ≤ F (dS , dT ) ·
√
K ·

( ∑
wS ,wT

(
ĉvl(wT , wS)− 1

)2) 1
2

. (62)

C Dataset Details

C.1 Pre-processing

For all the languages, we use existing stemmers to stem words in the corpora and the entries in
Wiktionary. Since Chinese does not have stemmers, we loosely use “stem” to refer to “segment”
Chinese sentences into words. We also use fixed stopword lists to filter out stop words. Table 1
lists the source of the stemmers and stopwords.

Language Family Stemmer Stopwords

ar Semitic Assem’s Arabic Light Stemmer 1 GitHub 2

de Germanic SnowBallStemmer 3 NLTK

en Germanic SnowBallStemmer NLTK

es Romance SnowBallStemmer NLTK

ru Slavic SnowBallStemmer NLTK

zh Sinitic Jieba 4 GitHub

Table 1: List of source of stemmers and stopwords used in experiments.

C.2 Training Sets

Our training set is a comparable corpus from Wikipedia. For each Wikipedia article page, there
exists an interlingual link to view the article in another language. This interlingual link provides
the same article in different languages and is commonly used to create comparable corpora in
multilingual studies. We show the statistics of this training corpus in Table 2. The numbers are
calculated after stemming and lemmatization.

English Paired language

#docs #token #types #docs #token #types

ar 3,000 724,362 203,024 3,000 223,937 61,267

de 3,000 409,381 125,071 3,000 285,745 125,169

es 3,000 451,115 134,241 3,000 276,188 95,682

ru 3,000 480,715 142,549 3,000 276,462 96,568

zh 3,000 480,142 141,679 3,000 233,773 66,275

Table 2: Statistics of the Wikipedia training corpus.

C.3 Test Sets

C.3.1 Topic Coherence Evaluation Sets

Topic coherence evaluation for multilingual topic models was proposed by Hao et al. (2018),
where a comparable corpus is used to calculate bilingual word pair co-occurrence and cnpmi
scores. We use a Wikipedia corpus to calculate this score, and the statistics are shown in Table 3.
This Wikipedia corpus does not overlap with the training set.

1http://snowball.tartarus.org;
2http://arabicstemmer.com;
3https://github.com/6/stopwords-json;
4https://github.com/fxsjy/jieba.
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English Paired language

#docs #token #types #docs #token #types

ar 10,000 3,092,721 143,504 10,000 1,477,312 181,734

de 10,000 2,779,963 146,757 10,000 1,702,101 227,205

es 10,000 3,021,732 149,423 10,000 1,737,312 142,086

ru 10,000 3,016,795 154,442 10,000 2,299,332 284,447

zh 10,000 1,982,452 112,174 10,000 1,335,922 144,936

Table 3: Statistics of the Wikipedia corpus for topic coherence evaluation (cnpmi).

#docs #technology #culture #education #token #types

en 11,012 4,384 4,679 1,949 3,838,582 104,164

ar 1,086 457 430 199 314,918 53,030

de 773 315 294 164 334,611 38,702

es 7,470 2,961 3,121 1,388 3,454,304 110,134

ru 1,035 362 456 217 454,380 67,202

zh 1,590 619 622 349 804,720 61,319

Table 4: Statistics of the Global Voices (gv) corpus.

C.3.2 Unseen Document Inference

We use the Global Voices (gv) corpus to create test sets, which can be retrieved from the website
https://globalvoices.org directly, or from the OPUS collection at http://opus.nlpl.eu/
GlobalVoices.php. We show the statistics in Table 4. After the column showing number of
documents, we also include the statistics of specific labels. The multiclass labels are mutual
exclusive, and each document has only one label.

Note that although all the language pairs share the same set of English test documents, the
document representations are inferred from different topic models trained specifically for that
language pair. Thus, the document representations for the same English document are different
across different language pairs.

Lastly, the number of word types is based on the training set and after stemming and lemma-
tization. When a word type in the test set does not appear in the training set, we ignore this
type.

C.3.3 Wiktionary

In downsampling experiments (Section 4.2), we use English Wiktionary to create bilingual dic-
tionaries, which can be downloaded at https://dumps.wikimedia.org/enwiktionary/.

D Topic Model Configurations

For each experiment, we run five chains of Gibbs sampling using the Polylingual Topic Model
implemented in MALLET (McCallum, 2002; Mimno et al., 2009), and take the average over all
chains. Each chain has 1,000 iterations, and we do not set a burn-in period. We set the topic
number K = 50. Other hyperparameters are α = 50

K = 1 and β = 0.01 which are the default
settings. We do not enable hyperparameter optimization procedures.
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