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Implicitly Intersecting Weighted Automata using Dual Decomposition	



F1  
(100 states)!

F2  
(100 states)!

F3  
(100 states)!

F1∩F2∩F3  
(1000000 states)!

F1∩Gλ1  
(100*|G| states)!

F2∩Gλ2  
(100*|G| states)!

Outputs agree 
on features?!Shortest path!

Intersect with each Fi!

Update λ	


Lagrange multipliers λ 

encourage strings to agree on 
n-gram feature vector γ(x)!

•  There are many problems in NLP where we want to identify the best string or 
sequence under a model with constraints.!
•  Sequence labeling, MT, transliteration, ASR, consensus finding, etc.!

•  Often we use dynamic programming for this, but this can be exponentially expensive 
in the number of constraints.!

•  Weighted finite state automata (WFSAs) are a fairly general encoding of how well 
strings are scored under a model.  The intersection of two or more WFSAs yields a 
WFSA which accepts strings with the combined score across all of the WFSAs.!

•  Intersection is expensive – intersections produce automata whose size increases 
multiplicatively rather than additively.!

•  Dual decomposition allows us to reformulate this so that we find the best string in 
each WFSA independently, rather than the best string in their full intersection – now we 
are back to an additive cost.!

•  This decomposition is valid if we add agreement constraints requiring that each of the 
WFSAs output the same string.!

•  Solving for each WFSA under these constraints can still be done efficiently and 
independently if we relax the constraints with Lagrange multipliers.!

•  We solve the Lagrangian dual with a subgradient ascent algorithm. The dual function 
is convex and lower bounds the primal, thus if we converge to a feasible solution in the 
dual, we know we have found the global optimum of the primal.!

•  Future work: MAP inference in graphical models over strings (Dreyer&Eisner 2009).!

F3∩Gλ3  
(100*|G| states)!

    Explicit Intersection    vs      Dual Decomposition!Solving for Sequences with Dual Decomposition!

Experiments with Consensus Decoding!

Above: An example of 5 (of 25) strings output at 
various iterations of our algorithm, where 
convergence is reached after 472 iterations. We 
performed consensus decoding on the top 25 
strings from 226 lattices produced by the IBM 
Attila decoder on Broadcast News utterances. 
85% of the problems converged to an exact 
solution within 1000 iterations.!

We also synthesized many different types of consensus 
problems to see how our algorithm behaved. For each problem, 
we generated a random base string, then generated K random 
mutations of the string. We adjusted the number of strings K, the 
length of the base string l, the alphabet size |Σ|, and the mutation 
probability μ.  
 !

Right: Across 100 random trials, we show the percentage which 
converged within 1000 iterations, the average number of 
iterations, and the reduction in score from the starting point.!
Bottom: Typical plots of the primal score (original objective) and 
the smaller dual score (the current Lagrangian objective). The 
algorithm converges when the duality gap is closed.!

Intersect!

Outputs agree?!

Solution x!

Make more features! 
(Use longer n-grams)!

Shortest path! Shortest path! Shortest path!

x1!

w1!

x2!

w2!

x3!

w3!

x4!

w4!

w1!

x?!
“Steiner consensus string”!

(has minimum total distance)!
= argminx (F1∩F2∩F3∩F4)(x)!

w2!

w3! w4!

Must agree!

Want to solve:!

F1(x)  !
edit-dist(w1, x)!

F2(x) !
edit-dist(w2, x)!

F3(x) !
edit-dist(w3, x)!

F4(x) !
edit-dist(w4, x)!

This is a hard problem to solve exactly.!
We show that we can often do it anyway with dual decomposition.!

All!

Yes!

No!

None!

Gλ is an n-gram WFSA 
weighted by λ !

F1(x1)! F2(x2)!

F4(x4)!F3(x3)!

Solution x!

x1! x2! x3!

Lagrangian dual!
(≤ primal regardless of λ)!

primal!

Some!

primal!

(concave lower bound)!

intended 
indented 

•  Agree on counts of 2-grams ʻenʼ, ʻteʼ, ʻdeʼ.!
•  But disagree on counts of 3-grams ʻtenʼ, ʻendʼ, ʻdenʼ, etc.!

•  So add these 3-grams as features!!

dual!

Example:!

Progression as dual 
decomposition iterates!

converged!

def
=

# Iterations Outputs x1, . . . , x5 at current iteration

0 <s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> WE WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I DON’T WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> WELL I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> THEY WANT TO BE TAKING A DEEP BREATH NOW </s>

300 <s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> WE WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I DON’T WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> WELL I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> WELL WANT TO BE TAKING A DEEP BREATH NOW </s>

375 <s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I DON’T WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I WANT TO BE TAKING A DEEP BREATH NOW </s>

472 <s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I WANT TO BE TAKING A DEEP BREATH NOW </s>
<s> I WANT TO BE TAKING A DEEP BREATH NOW </s>

K � |Σ| µ Conv. Iters. Red.
5 100 5 0.1 68% 257 (±110) 24%
5 100 5 0.2 0% – 8%
5 50 5 0.1 80% 123 (± 65) 20%
5 50 5 0.2 10% 436 (±195) 18%

10 50 5 0.1 69% 228 (±164) 18%
10 50 5 0.2 0% – 8%
10 50 5 0.4 0% – 3%
10 30 10 0.1 100% 50 (± 69) 13%
10 30 10 0.2 93% 146 (±142) 20%
10 30 10 0.4 0% – 16%
10 15 20 0.1 100% 26 (± 6) 1%
10 15 20 0.2 98% 43 (± 18) 10%
10 15 20 0.4 63% 289 (±217) 18%
10 15 20 0.8 0% – 11%
25 15 20 0.1 98% 30 (± 5) 0%
25 15 20 0.2 92% 69 (±112) 6%
25 15 20 0.4 55% 257 (±149) 16%
25 15 20 0.8 0% – 12%
50 10 10 0.2 68% 84 (±141) 0%
50 10 10 0.4 21% 173 (± 94) 9%

100 10 10 0.2 44% 147 (±220) 0%
100 10 10 0.4 13% 201 (±138) 6%

q0

qa

qb

qc

q#

. . .

�

b

c

�
b

a
a

c

a

b

c
b

�
ca

argmin
x

�

k

Fk(x)

argmin
{x1,...,xK}

�

k

Fk(xk) + λk · γ(xk)
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