PUBLIC HEALTH MEETS SOCIAL MEDIA: MINING HEALTH INFO FROM TWITTER

Michael Paul (@mjp39) Johns Hopkins University

Crowdsourcing and Human Computation University of Pennsylvania October 30, 2013

Learning about the real world through Twitter

- Millions of people share on the web what they are doing every day
- Can analyze social media to infer what is happening in a population
 - Can make inferences about the population's health
- Passive data monitoring
 - Work with data that's already out there
 - vs active methods: soliciting data from people (e.g. surveys)
- Faster, cheaper than traditional data collection but noisier

This lecture: Key ideas

- Applications
 - What can we learn about health? (and why would we want to do that?)
- Methods
 - How do you mine Twitter?
- Evaluation
 - How accurate is the mined data?
- Ethics
 - How does social media mining fit in with current medical research practices?

Twitter: Data

- Free streams of data provide 1% random sample of public status messages (tweets)
- Search streams provide tweets that match certain keywords
 - Still capped at 1%, but more targeted
 - We collect tweets matching any of 269 health keywords

,sick,cold,body,pain,hurts,sore,nose,hospital,doctor,cancer,u ,burning,flu,exhausted,medicine,surgery,knee,cough,fever,doct ise,cure,eaten,dentist,vision,bedtime,physical,treatment,pill t,ache,ankle,pill,numb,recovery,physically,wrist,depression,h y,clinic,pains,jaw,sneeze,lungs,swollen,puke,anxiety,appt,rec petite,resting,coughing,infection,diabetes,migraine,sickness,

- <u>https://dev.twitter.com/docs/streaming-apis/keyword-matching</u>
- <u>https://github.com/mdredze/twitter stream downloader</u>

Twitter: Location data

 Geolocation: often we need to identify where the authors of tweets are located

- Some tweets tagged with GPS coordinates
 - Only 2-3% of tweets/users
 - Can improve coverage by tenfold by also considering self-reported location in user profiles

Twitter: Location data

 Geolocation: often we need to identify where the authors of tweets are located

Carmen

 Identifies where a tweet is from using GPS + user profile info, e.g.

```
{"city": "Baltimore",
"state": "Maryland",
"country": "United States"}
```


- Java (python coming soon) software available:
 - <u>https://github.com/mdredze/carmen</u>

Twitter: Health data?

Twitter is a noisy data source

Mashable Social Media * TECH * BUSINESS * ENTERTAINMENT * MORE * TWITTER ANALYSIS: 40% of Tweets Are Pointless Babble

• 2012 study (André, Bernstein, Luther):

ratings on Twitter updates. Using our dataset of over 43,000 voluntary ratings, we find that nearly 36% of the rated tweets are worth reading, 25% are not, and 39% are middling. These results suggest that users tolerate a large amount of less-desired content in their feeds. We find that

Twitter: Health data?

- My estimate: about 0.1% of tweets are about tweeters' health
 - (1.6 million out of 2 billion tweets in an earlier study)
- 0.1% of Twitter is still a lot of data!
 - ~ half a million tweets per day
- Lots of data, but hard to find in noise
 - Absolutely huge
 - Relatively tiny

Finding health tweets

- Step 1: keyword filtering
 - Filter out tweets unlikely to be about health
 - Large set of 20,000 keywords
- Not all tweets containing keywords are actually about someone's health
 - This tweet contains lots of health keywords:

 raspberry ketone @raspberryketoe
 1h

 3X 500 MG SUPER PURE RASPBERRY KETONE ULTRA WEIGHT
 LOSS DIET PILLS HIGH GRADE ift.tt/15AovHN #RaspberryKetone

 #weightmanagemen...
 Point

C View summary

Step 2: supervised machine learning

Finding health tweets

- Step 2: supervised machine learning
- Labeled data
 - 5,128 tweets

- Labels collected through Mechanical Turk
 - Each tweet labeled by 3 annotators
 - Final label determined by majority vote
 - 10 labels per HIT
 - Each HIT contained 1 gold-labeled tweet to identify poorquality annotators

amazon mechanical turk

Finding health tweets

- About 1% of tweets contained the 20,000 health keywords
- About 15% of those were tagged as relevant by the health machine learning classifier

about 0.1% of all tweets are health-related

- **1.6 million** health tweets from 2009-2010
- Over 150 million collected since Aug 2011

Health tweets

• So we can we do with health tweets?

Flu surveillance

- Idea: people tweet about being sick
- More sick tweets will appear when the flu is going around
 - <u>https://twitter.com/search?q=flu&src=typd&f=realtime</u>
- Why do we care?
 - Cheap data source to complement primary disease surveillance systems (e.g. hospital data, lab work)
 - Real-time, can be automated
 - Lofty goal: early detection of novel, serious epidemics

Flu surveillance

- Goal: identify and count tweets that indicate the user is sick with the flu
 - Proxy for how many people in the population have the flu
- Challenge: not all tweets that mention "flu" actually indicate a person is sick

Finding flu tweets

- As before: supervised machine learning
- Labeled data
 - 11,990 tweets

- Flu infection | General flu awareness | Unrelated to flu
- Same quality control measures as before
 - Also hand-verified all labels in the end
 - Changed 14% of labels

Finding flu tweets

- Machine learning classifiers identify tweets that indicate flu infection
- Many features beyond n-grams:
 - Retweets, user mentions, URLs
 - Part-of-speech information
 - Word classes:

Infection	getting, got, recovered, have, having, had, has, catching, catch,		
Disease	bird, the flu, flu, sick, epidemic		
Concern	afraid, worried, scared, fear, worry, nervous, dread, terrified		
Treatment	vaccine, vaccines, shot, shots, mist, tamiflu, jab, nasal spray		

Flu surveillance

• Estimated weekly rate of flu on Twitter:

tweets about flu infection that week
of all tweets that week

 Normalize by number of all tweets to adjust for change in Twitter volume over time

Flu surveillance (2009-10)

- Large spike of flu activity around October
 - This was during the swine flu pandemic

Is this accurate?

Flu surveillance: Evaluation

- Compare our estimates to "ground truth" data
- We take government surveillance data to be ground truth
 - from the CDC (Centers for Disease Control and Prevention)
 - weekly counts of hospital outpatient visits for influenza-like symptoms
- Common metric: Pearson correlation
 - compare temporal trend of Twitter estimates against CDC data

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Flu surveillance (2009-10)

Correlation with CDC: 0.99

Flu surveillance (2012-13)

Correlation with CDC: 0.93

- What if we just estimate the flu rate by counting tweets containing the words "flu" or "influenza"?
- 2012-2013 Influenza Season 120000 $\overline{\overline{\sigma}}^{c}$ Influenza prevalence (tweets per thousand) Not as highly correlated: CDC (outpatient surveillance) I₁ Influenza prevalence (outpatient visits) Infection detection algorithm All influenza tweets 100000 2009-10: 0.97 (2% reduction) 2012-13: 0.75 (20% reduction) 80000 20 60000 40000 2000 5 09/30/12 11/04/12 12/09/12 01/13/13 02/17/13 03/24/13 04/28/13 06/02 Week start date
- More spurious spikes from keyword matching

Cross-correlation

 Measures similarity between curves when one of the trends is offset by some number of weeks (lead/lag)

$$(f \star g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(\tau) g(t+\tau) d\tau$$

Twitter neither leads/lags CDC (but maybe certain keywords do?)

- Basic correlation may overstate how good you are doing
 - As long as the peak weeks have above-average rates and the offseason weeks are below-average, you'll get a pretty high number
 - Especially true if trend has high autocorrelation (cross-correlation with itself) at nonzero lag

Trend differencing

- Subtract previous week's rate from current week
- Measures correlation of week-to-week increase/decrease
 - More directly measures what you probably care about
- Box-Jenkins methods
 - Guidelines for applying differencing

- Simple accuracy
 - How often does the weekly direction of the trend (up or down) match CDC?
- Maybe more interpretable than correlation
- Our Twitter infection classifier:
 - **85%** direction accuracy (2012-13)
 - Simple keyword matching: 46%

Beyond flu

- The flu project was an in-depth study of one disease
 - Machine learning with human annotations
 - Time/labor intensive
 - Rich set of features

Beyond flu

- The flu project was an in-depth study of one disease
 - Machine learning with human annotations
 - Time/labor intensive
 - Rich set of features
- Alternative approach: broad, exploratory analysis
 - Find lots of diseases on Twitter
 - Unsupervised machine learning
 - No human input
 - Simple keyword-based models

Topic modeling

- Statistical model of text generation
 - decomposes data set into small number of "topics"

topic 1

topic 2

topic simplex

topic 3

word simplex

- the topics are not given as labels
 - unsupervised model
- Two types of parameters:
 - p(topic|document) for each document
 - p(word|topic) for each topic

Topic modeling

- Automatically groups words into topics
- Automatically labels documents with topics
- Example when applied to New York Times articles:

music band songs rock album jazz pop song song singer night	book life novel story books man stories love children family	art museum show exhibition artist artists paintings painting century works	game Knicks nets points team season play games night coach
theater	clinton	stock	restaurant
play	bush	market	sauce
production	campaign	percent	menu
show	gore	fund	food
stage	political	investors	dishes
street	republican	funds	street
broadway	dole	companies	dining
director	presidential	stocks	dinner
musical	senator	investment	chicken
directed	house	trading	served

• from Hoffman, Blei, Wang, Paisley

- We created a topic model specifically for finding health topics in Twitter
- Ailment Topic Aspect Model (ATAM)
 - Distinguishes health topics from other topics in the data
 - Breaks down health topics by general words, symptom words, treatment words

"Aches and Pains"

"Insomnia"

"Allergies"

Topic modeling: Evaluation

- How accurately do these word clusters correspond to realworld concepts?
- As before: find existing data sources to compare to

Topic modeling: Diet and exercise

- Compare the "diet and exercise" health topic to government survey data about lifestyle factors
- Track rates across U.S. states
 - Geographic trends (vs temporal trends)
- Positively correlated with rates of physical activity and aerobic exercise
 - 0.61 and 0.53
- Negatively correlated with rates of obesity
 - -0.63

- Allergies aren't part of CDC surveillance systems
 - But private data sources exist
- We compared to phone survey results from Gallup
 - "Were you sick with allergies yesterday?"

- Correlation: 0.48
 - 2011-12 season only: 0.84

higher in 2012-13; conflated with strong flu season (similar symptoms: coughing, sneezing)

Topic modeling: Evaluation

- Informal evaluation: visualize, check against intuition
- Do word clusters make sense?
 - Is there obvious noise?
 - e.g. cold/flu symptoms mixed with allergies
- Do geographic patterns make sense?
 - Are rates similar in nearby states?

February 2010

April 2010

June 2010

Other methods

- (Linear) Regression
 - Explicitly train your system to predict ground-truth data
 - Approach used by Google Flu Trends (and others)

- Manual analysis by humans
 - "small data" approach
 - Good option for ideas too difficult to automate with machine learning

Other applications

- Broad health applications seem to work well enough
 - but the data may not support deeper medical questions
 - people share a lot but not everything
 - demographics differ between real world and social media
 - and can vary a lot between different social media sites
- More hype than substance in many applications
 - Can Twitter predict the stock market?
 - I don't know of anyone who has gotten rich from this yet...
 - Can Twitter predict **elections**?
 - If it could, Ron Paul would be president...

Ethics/Privacy

- Ethics is an important part of human subject research
- But there aren't comparable guidelines for "human computation" research
- So here are some things to think about...

Ethics: Guidelines

- Modern medical research guided by IRBs (institutional review board)
- IRB policy on social media data mining:
 - Data is public, therefore no approval required
 - This applied to what I showed you today
 - This policy may eventually change
- There are still privacy norms surrounding public data
 - and it's possible to use public data in creepy ways

Ethics: Guidelines

- Informed consent?
- Technically, if people actually read this:
- Tweets are public by default
 - not all users realize this
- Even if users are aware the data is public, they might not expect it to be used in certain ways

Ethics: Privacy

- Aggregate statistics generally preserve privacy
 - as long as they aren't aggregated in a town of 20 people
- Analysis of individual users may deviate from privacy expectations

• Sadilek, Kautz, Silenzio 2012

Ethics: Privacy

 Health information is particularly sensitive and should be treated differently

Courtesy of MappyHealth by Social Health Insights

Ethics: Privacy

- Hard to fully anonymize data
 - Same issue with medical records
- Can be de-anonymized with more data, more context

Ethics: Rules of thumb

- Stick to large-scale aggregate analysis
- Don't use more data than a user likely intended to share
- Don't use data that you don't need for what you're doing
- Think about how users will react to your app or research
- Good reading:
 - Slides by Caitlin Rivers: "Ethical user of Twitter for digital disease detection"
 - <u>http://figshare.com/articles/</u> <u>Ethical_use_of_Twitter_for_DigDisDet/805198</u>
 - danah boyd and Kate Crawford. 2012. Critical questions for Big Data. Information, Communication & Society: 15(5).

See more

socialmediahealthresearch.org

- CIKM 2013 tutorial: Twitter and the real world
 - https://sites.google.com/site/twitterandtherealworld/
- Conference on Digital Disease Detection
 - http://healthmap.org/ddd/
- Apps/startups:
 - GermTracker germtracker.org
 - MappyHealth <u>mappyhealth.com</u>
 - Sickweather <u>sickweather.com</u>